BAYES-NEAREST: A New Hybrid Classifier Combining Bayesian Network and Distance Based Algorithms
نویسندگان
چکیده
This paper presents a new hybrid classifier that combines the probability based Bayesian Network paradigm with the Nearest Neighbor distance based algorithm. The Bayesian Network structure is obtained from the data by using the K2 structural learning algorithm. The Nearest Neighbor algorithm is used in combination with the Bayesian Network in the deduction phase. For those data bases in which some variables are continuous valued, automatic discretizations of the data are performed. We show the performance of the new proposed approach compared with the Bayesian Network paradigm and with the well known Naive Bayes classifier in some standard databases; the results obtained by the new algorithm are better or equals according to the Wilcoxon statistical test. BAYES-NEAREST: a new Hybrid classifier Combining Bayesian Network and Distance Based algorithms
منابع مشابه
Predicting Subcellular Locations of Eukaryotic Proteins Using Bayesian and /k/-Nearest Neighbor Classifiers
Biologically, the function of a protein is highly related to its subcellular location. It is of necessity to develop a reliable method for protein subcellular location prediction, especially when a large amount of proteins are to be analyzed. Various methods have been proposed to perform the task. The results, however, are not satisfactory in terms of effectiveness and efficiency. A hybrid appr...
متن کاملApplication of Machine Learning Techniques to Differential Diagnosis of Erythemato-Squamous Diseases
This paper is about the implementation of a visual tool for Differential Diagnosis of Erythemato-Squamous Diseases based on the classification algorithms; Nearest Neighbor Classifier (NN), Naive Bayesian Classifier using Normal Distribution (NBC) and Voting Feature Intervals-5 (VFI5). This tool enables the doctors to differentiate six types of ErythematoSquamous Diseases using clinical and hist...
متن کاملHybrid Bayesian Estimation Trees Based on Label Semantics
Linguistic decision tree (LDT) [7] is a classification model based on a random set based semantics which is referred to as label semantics [4]. Each branch of a trained LDT is associated with a probability distribution over classes. In this paper, two hybrid learning models by combining linguistic decision tree and fuzzy Naive Bayes classifier are proposed. In the first model, an unlabelled ins...
متن کاملComparison of Distance Metrics for Phoneme Classification based on Deep Neural Network Features and Weighted k-NN Classifier
K-nearest neighbor (k-NN) classification is a powerful and simple method for classification. k-NN classifiers approximate a Bayesian classifier for a large number of data samples. The accuracy of k-NN classifier relies on the distance metric used for calculating nearest neighbor and features used for instances in training and testing data. In this paper we use deep neural networks (DNNs) as a f...
متن کاملA Hybrid Generative/Discriminative Bayesian Classifier
In this paper, we introduce a new restricted Bayesian network classifier that extends naive Bayes by relaxing the conditional independence assumptions, and show that it is partly generative and partly discriminative. Experimental results show that the hybrid classifier performs better than a purely generative classifier (naive Bayes) or a purely discriminative classifier (Logistic Regression) a...
متن کامل